Nonlinear Structural Materials Module

Expand Structural Analyses with the Nonlinear Structural Materials Module

 Read more below 

Want to know more?

I Want To Know More Form

Nonlinear Structural Materials Module

Get a software demonstration

Access a Variety of Hyperelastic, Elastoplastic, Viscoplastic, and Creep Material Models

Many materials have a nonlinear stress-strain relationship, particularly at higher stress and strain levels. When analysing objects made of such materials, you need to account for nonlinearities in the material properties. The Nonlinear Structural Materials Module, an add-on to the Structural Mechanics Module and the COMSOL Multiphysics® software, makes it easy to incorporate these effects by offering additional material models such as hyperelasticity, elastoplasticity, viscoplasticity, and creep.

The Nonlinear Structural Materials Module augments the functionality of structural mechanics models in COMSOL Multiphysics®. You can customise structural analyses for your unique needs by combining the built-in material models and even defining your own models based on, for example, stress or strain invariants. You can create your own flow rules and creep laws, as well as your own strain energy density functions for hyperelasticity.

The functionality for modelling nonlinear materials augments all of the structural analyses available with COMSOL Multiphysics®. This extends to the other structural mechanics add-on modules: the Composite Materials Module, the Fatigue Module, the Multibody Dynamics Module, and the Rotordynamics Module; as well as the MEMS Module. Additionally, as with every COMSOL Multiphysics® add-on module, there are built-in multiphysics capabilities for modelling thermal effects and fluid-structure interaction, for example.

The Geomechanics Module, a similar but separate add-on to the Structural Mechanics Module, is specifically developed for materials common in geotechnical applications such as soils and rocks.

What You Can Model with the Nonlinear Structural Materials Module

The Nonlinear Structural Materials Module contains dozens of material models to help you model a wide range of solid materials. Hyperelasticity is commonly used for rubber and biological tissue; the plasticity and creep models are predominantly used for metals; porous plasticity is intended for powder compaction (metals as well as pharmaceutical pills); the damage models are mainly applicable for brittle materials, like ceramics; and shape memory alloy models are useful for materials like nitinol.

Material Models

Hyperelasticity:
  • Arruda–Boyce
  • Blatz–Ko
  • Gao
  • Gent
  • Mooney–Rivlin
    • Two parameters
    • Five parameters
    • Nine parameters
  • Murnaghan
  • Neo–Hookean
  • Ogden
  • Venant–Kirchhoff
  • Storakers
  • Varga
  • Yeoh
  • Mullins effect
    • Ogden–Roxburgh
    • Miehe
  • Large strain viscoelasticity
  • User-defined hyperelastic materials
 
Nonlinear Elasticity:
  • Ramberg–Osgood
  • Power law
  • Uniaxial data
  • Bilinear elastic
  • User-defined nonlinear elasticity
 
Shape Memory Alloy:
  • Lagoudas
  • Souza–Auricchio
 
Creep:
  • Norton
  • Norton–Bailey
  • Garofalo (hyperbolic sine)
  • Coble
  • Nabarro–Herring
  • Weertman
  • Deviatoric
  • Volumetric
  • Potential
  • User-defined creep
Plasticity:
  • von Mises yield criterion
  • Tresca yield criterion
  • Orthotropic Hill plasticity
  • Isotropic hardening
    • Linear
    • Ludwik
    • Swift
    • Voce
    • Hockett–Sherby
    • User defined
  • Kinematic hardening
    • Linear
    • Armstrong–Frederick
    • Chaboche
  • Perfectly plastic hardening
  • Large-strain plasticity
  • User-defined yield surface and flow rule
 
Porous Plasticity:
  • Shima–Oyane
  • Gurson
  • Gurson–Tvergaard–Needleman
  • Fleck–Kuhn–McMeeking
  • FKM–GTN
  • Capped Drucker–Prager
  • Large-strain plasticity
 
Viscoplasticity:
  • Anand
  • Chaboche
  • Perzyna
 
Damage:
  • Equivalent strain criterion
    • Rankine
    • Smooth Rankine
    • Norm of elastic strain tensor
    • User defined
  • Phase-field damage
  • Regularisation
    • Crack band
    • Implicit gradient
    • Viscous regularisation

Simulation Applications: Customise Inputs and Outputs for Streamlined Design

The Application Builder, included in COMSOL Multiphysics®, enables you to build simulation applications that further simplify the simulation workflow by enabling you to restrict the inputs and control the outputs of your model so that your colleagues can run their own analyses. Working with specific material models, this functionality is especially useful for testing how different materials affect a simulation.

With specialised applications, you can easily change a design parameter, such as a geometrical dimension or material property, and test it as many times as you need without having to know the inner workings of the software. You can use applications to run your own tests more quickly or distribute applications to other members of your team to run their own tests, further freeing up your time and resources for other projects.

The process is simple:

  1. Transform your structural mechanics model into a specialised user interface (a simulation application)
  2. Customise the application to your needs by selecting inputs and outputs for the application users
  3. Use the COMSOL Server™ or COMSOL Compiler™ deployment products to make applications accessible to other team members
  4. Enable your team to run their own design analyses without further assistance

You can expand the capabilities of simulation throughout your team, organisation, classroom, or customer base by building and using simulation applications.

Every business and every simulation need is different.

In order to fully evaluate whether or not the COMSOL Multiphysics® software will meet your requirements, you need to contact us. By talking to one of our sales representatives, you will get personalised recommendations and fully documented examples to help you get the most out of your evaluation and guide you to choose the best license option to suit your needs.

Fill in your contact details and any specific comments or questions, and submit. You will receive a response from a sales representative within one business day.

Request a Software Demonstration:
Request Software Demonstration

Want to know more?

I Want To Know More Form
(COMSOL®, COMSOL Multiphysics®, Capture the Concept, COMSOL Desktop®) are registered trademarks of COMSOL AB, LiveLink™ is an unregistered trademark of COMSOL AB, ACIS and SAT are registered trademarks of Spatial Corporation. AutoCAD, AutoCAD Inventor and Inventor are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. CATIA is a registered trademark of Dassault Systèmes or its subsidiaries in the US and/or other countries. Microsoft, Excel and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Parasolid and Solid Edge are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. SolidWorks is a registered trademark of Dassault Systèmes SolidWorks Corporation. Creo and Pro/ENGINEER are trademarks or registered trademarks of PTC Inc. or its subsidiaries in the U.S. and in other countries. MATLAB is a registered trademark of The MathWorks, Inc. Amazon Web Services, the “Powered by Amazon Web Services” logo, Amazon EC2 and Amazon Elastic Compute Cloud are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries. Mac and Macintosh are trademarks of Apple Inc., registered in the U.S. and other countries. Linux is a registered trademark of Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. in the U.S. and other countries. Neither COMSOL nor any COMSOL products are affiliated with, endorsed by, sponsored by, or supported by any of these other trademark owners. Other product names, brand names or logos are trademarks or registered trademarks of their respective holders.
chevron-left-circlechevron-right-circle