Corrosion Module

Model Electrochemical Corrosion Processes and Cathodic Protection Designs with the Corrosion Module

 Read more below 

Want to know more?

I Want To Know More Form

Electrochemical Corrosion Is Everywhere

Most corrosion occurs due to electrochemical reaction processes taking place underwater and in wet or humid environments. The Corrosion Module allows engineers and scientists to investigate these processes, gain an understanding of the extent to which corrosion could occur over the lifetime of a structure, and implement preventative measures to inhibit electrochemical corrosion, in order to protect their structures. The module can be used to simulate corrosion at the microscale in order to investigate the fundamental mechanisms, and at larger scales to determine how to protect massive or long-ranging structures from corroding.

Understanding Corrosion Is Key

The Corrosion Module also allows you to design effective corrosion protection systems. This includes the simulation of Impressed Cathodic Current Protection (ICCP), sacrificial anodes, and anodic protection, where anodic current is impressed on corroding material to enforce passivation.

By using the Corrosion Module to investigate the specific protection mechanisms at the microscale, you can extract parameters that may be used to simulate larger structure, for example hydroxide film growth on protected structures. You can import CAD files containing your designs in COMSOL Multiphysics, and then set up the description of the protection process. Upon identifying regions in your structure that are susceptible to accelerated corrosion, you can specify the placement of sacrificial anodes, and where cathodic or anodic protection currents should be impressed.

Another application of the module is to estimate the effect of stray currents on the corrosion of buried structures or structures under water. You can then also use the module to optimise the positioning of protective electrodes to avoid this corrosion mechanism. When correctly designed, these electrodes mediate the uptake of stray currents without corroding the structure placed close to a stray current source, e.g. a railroad.

A steel structure immersed in seawater is protected from corrosion through 40 sacrificial anodes. This example models the potential distribution at the surface of the protected structure assuming a constant limiting current for oxygen reduction at the protected surface.

Optimising Corrosion Protection Systems

The Corrosion Module also allows you to design effective corrosion protection systems. This includes the simulation of Impressed Cathodic Current Protection (ICCP), sacrificial anodes, and anodic protection, where anodic current is impressed on corroding material to enforce passivation.

By using the Corrosion Module to investigate the specific protection mechanisms at the microscale, you can extract parameters that may be used to simulate larger structure, for example hydroxide film growth on protected structures. You can import CAD files containing your designs in COMSOL Multiphysics, and then set up the description of the protection process. Upon identifying regions in your structure that are susceptible to accelerated corrosion, you can specify the placement of sacrificial anodes, and where cathodic or anodic protection currents should be impressed.

Another application of the module is to estimate the effect of stray currents on the corrosion of buried structures or structures under water. You can then also use the module to optimise the positioning of protective electrodes to avoid this corrosion mechanism. When correctly designed, these electrodes mediate the uptake of stray currents without corroding the structure placed close to a stray current source, e.g. a railroad.

Modelling the Extended Effects of Electrochemical Corrosion

The impact corrosion can have on a structure over time can be downright catastrophic. As corrosion removes material from a structure, it may compromise its structural integrity.

In some cases, you may want to do a structural analysis in combination with corrosion analysis to see which parts of the structure are subjected to high stresses and strains. Corrosion in these parts may be devastating, so you want to make sure that these parts are protected. To understand the corrosion effects and to optimise your corrosion protection design, you can combine the Corrosion Module with the Structural Mechanics Module. This is thanks to the extensive power of COMSOL Multiphysics, which allows you to directly couple models built in one module with any other module.

In other cases, turbulent and multiphase flow may need to be combined with transport of chemical species. You can then use the CFD Module in combination with the mass transport interfaces in the Corrosion Module to obtain accurate mass transport descriptions.

Product Features

  • Arbitrary definition of electrochemical reactions where kinetic parameters such as concentration and corrosion potential can be temperature-dependent
  • Allows for secondary and tertiary current density distributions to be produced, using built-in interfaces for describing Butler-Volmer and Tafel equations
  • Mass transfer through diffusion, convection, and ionic migration in dilute and concentrated electrolytes (Nernst-Planck equations)
  • Chemical species transport and fluid flow in porous media
  • Supports investigating and including limiting current densities in electrode kinetics
  • Features supporting the simulation of cyclic voltammetry, potentiometry, and AC impedance for investigating corrosion reaction kinetics
  • Support for the effects of corroding surface topologies on electrochemical kinetics, current distribution, and corrosion potential
  • Laminar fluid flow, heat transfer, and Joule heating
Application Areas
  • Anodic protection
  • Cathodic protection
  • Double layer capacitance
  • Corrosion protection (CP)
  • Crevice corrosion
  • Galvanic corrosion
  • Impressed Current Cathodic Protection (ICCP)
  • AC Mitigation
  • Passivation
  • Pitting corrosion
  • Signature Management
  • Underwater electric potential (UEP)
  • Corrosion Related Magnetic (CRM) fields
  • AC/DC (HVDC) interference analysis
  • Soil resistivity
  • Anode Bed design
  • Surface protection
  • ICCP sleds

Every business and every simulation need is different.

In order to fully evaluate whether or not the COMSOL Multiphysics® software will meet your requirements, you need to contact us. By talking to one of our sales representatives, you will get personalised recommendations and fully documented examples to help you get the most out of your evaluation and guide you to choose the best license option to suit your needs.

Fill in your contact details and any specific comments or questions, and submit. You will receive a response from a sales representative within one business day.

Request a Software Demonstration:
Request Software Demonstration

Want to know more?

I Want To Know More Form
(COMSOL®, COMSOL Multiphysics®, Capture the Concept, COMSOL Desktop®) are registered trademarks of COMSOL AB, LiveLink™ is an unregistered trademark of COMSOL AB, ACIS and SAT are registered trademarks of Spatial Corporation. AutoCAD, AutoCAD Inventor and Inventor are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. CATIA is a registered trademark of Dassault Systèmes or its subsidiaries in the US and/or other countries. Microsoft, Excel and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Parasolid and Solid Edge are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. SolidWorks is a registered trademark of Dassault Systèmes SolidWorks Corporation. Creo and Pro/ENGINEER are trademarks or registered trademarks of PTC Inc. or its subsidiaries in the U.S. and in other countries. MATLAB is a registered trademark of The MathWorks, Inc. Amazon Web Services, the “Powered by Amazon Web Services” logo, Amazon EC2 and Amazon Elastic Compute Cloud are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries. Mac and Macintosh are trademarks of Apple Inc., registered in the U.S. and other countries. Linux is a registered trademark of Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. in the U.S. and other countries. Neither COMSOL nor any COMSOL products are affiliated with, endorsed by, sponsored by, or supported by any of these other trademark owners. Other product names, brand names or logos are trademarks or registered trademarks of their respective holders.
chevron-left-circlechevron-right-circle